4. Forschungstag der Gasindustrie GreenGas-Projekt und sein Innovation Lab

notre énergie, votre avenir

Aigle, 15. November 2023

Gaznat in einigen Zahlen

Daten 2022

Haupttätigkeiten

- ✓ Kauf Verkauf Transport Lagerung von Erdgas.
- ✓ Einrichtung, Wartung und Betrieb des Hochdrucktransportnetzes in der Westschweiz:
- ✓ Vertretung der Interessen der Partner und Förderung von Gas

Forschung & Entwicklung

- Dekarbonisierung
- Erneuerbare Gase
- Energiespeicherung
- Netze

Hauptsitz in Vevey (CH)

Technik- und Überwachungszentrum in Aigle (CH)

Bau und Instandhaltung von Hochdruckgasleitungen

Bau von Verbindungs- und Entspannungsstationen

CHF 2'029 Mio.

Konsolidierter Umsatz

3'686 MW

Maximal abgegebene Leistung auf das Netz

11'100 GWh

Transportiertes Gas

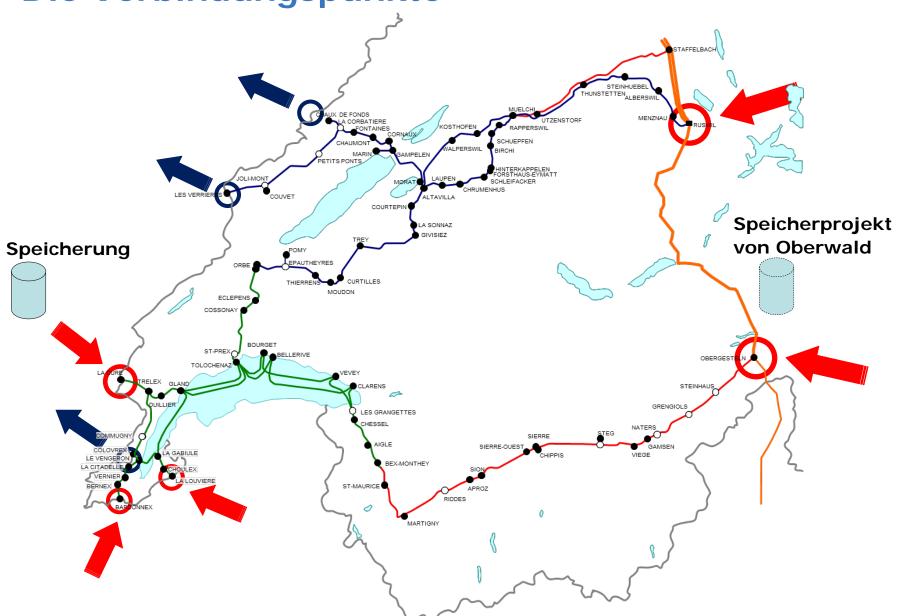
9'699 GWh

Direktverkauf von Gas

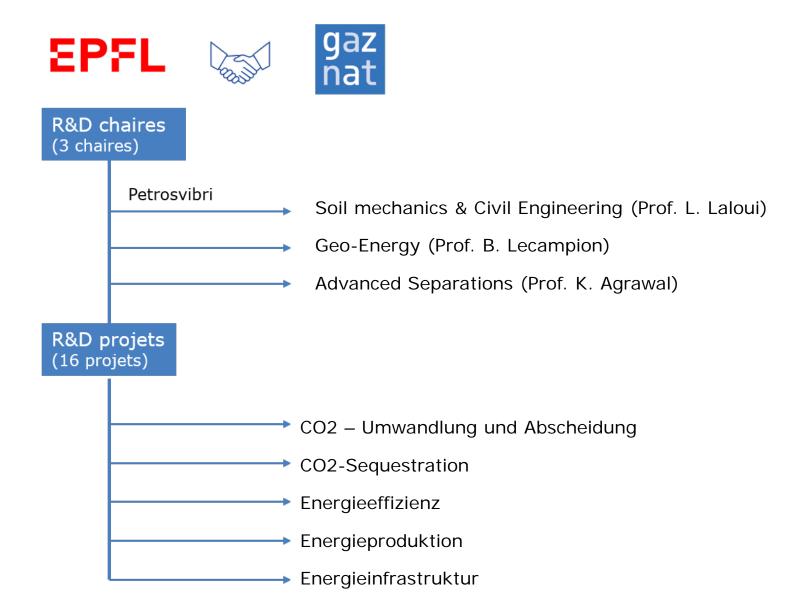
600 km

Gaspipelines

50


Auspeisepunkte

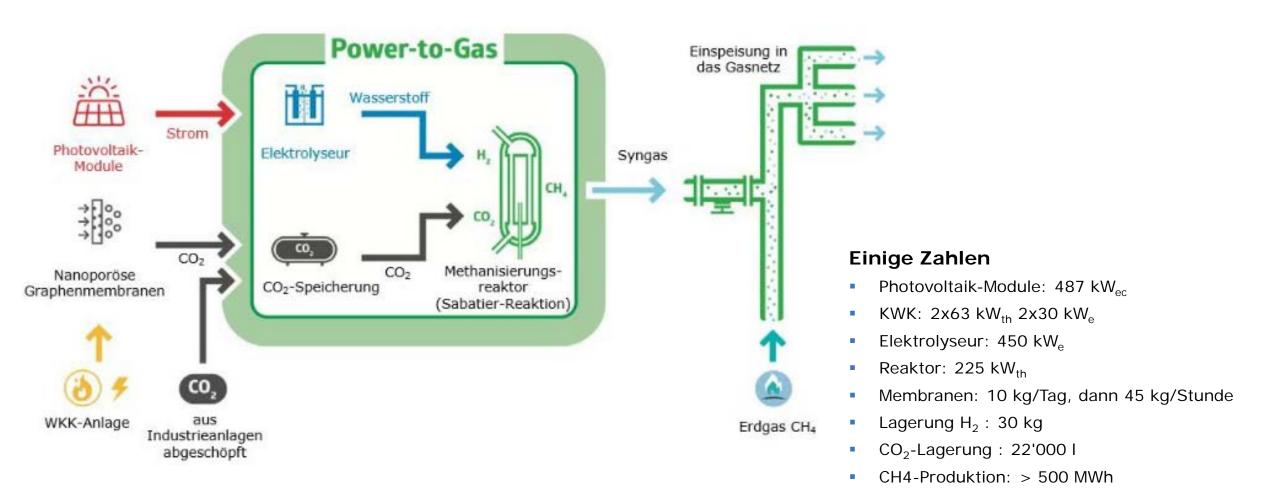
Überprüfung der Integrität von Leitungen


Das Netzwerk von Gaznat Die Verbindungspunkte

Vereinbarung mit der EPFL

GreenGas-Projekt und Innovation Lab

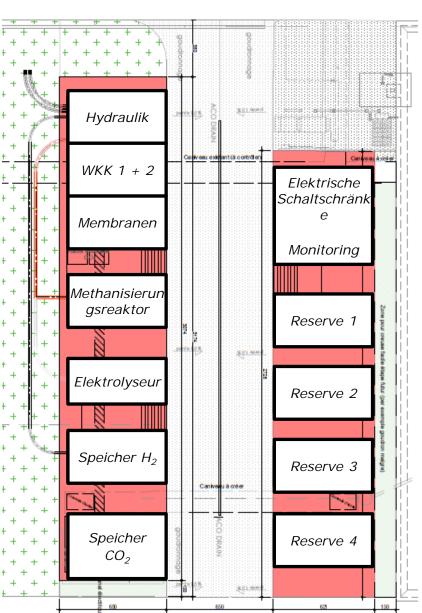
GreenGas-Projekt und Innovation Lab in Aigle Wichtigste Ziele



- Bestandsaufnahme des Standorts in Bezug auf die Energieerzeugung und den Verbrauch (elektrisch, thermisch warm/kalt) erstellen;
- Produktionspotenzial für erneuerbare Energien (hauptsächlich Photovoltaikmodule) bestimmen;
- Entwicklung eines neuen Energiekonzepts für den Standort, mit dem sowohl der Energiebedarf als auch die Ziele für die lokale Produktion von CO₂-neutralem Gas gedeckt werden können;
- Gewährleistung der Energieversorgungssicherheit des Standorts aufgrund seiner strategischen Funktion, nämlich der Leitung und Überwachung des Hochdruckgasnetzes in der Westschweiz;
- Integration neuer Technologien in das Konzept, darunter insbesondere ein Methanisierungsreaktor sowie Membranen zur CO₂-Abscheidung;
- Langfristig eine Testplattform "Innovation Lab" für verschiedene neue Technologien im Zusammenhang mit Energie anbieten (Brennstoffzellen, Elektrolyseure, Batterien usw.).

GreenGas-Projekt und Innovation Lab

Lageplan des Standorts, Aigle GreenGas-Projekt und Innovation Lab



Details zur Ansiedlung Innovation Lab

Plattform mit Mittelgang

In Containern installierte Geräte

4 Reservecontainer, die für Tests neuer Technologien zur Verfügung stehen

Investitionshaushalt

- Gesamtbetrag: CHF 5.8 Mio. (davon 1 Mio. Zuschüsse)
 - BFE P&D-Projekt* für Methanisierungsreaktor und Membranen zur CO₂-Abscheidung Kanton Waadt, VSG und FOGA
- Einweihung fand am 30. August 2023 statt
- Fortsetzung der Tests zur Integration, Produktion und Abscheidung von CO₂

^{*} P&D = Pilot & Demonstrator

Entwicklung der Methanisierung

Forschung und Entwicklung mit der EPFL (Prof. Züttel) für den im Reaktor verwendeten Katalysator

Ziel: drastische Senkung der Produktionskosten

Entwicklung des Methanisierungsreaktors für die zukünftige Vermarktung, mit GRZ Technologies

- Erstellen eines Business Plans
- «All-in-one»-Produkt in einem Container, mit erforderlichen Zertifizierungen

Kapazitäten zur Speicherung von Wasserstoff in Metallhydriden (Innovation GRZ Technologies)

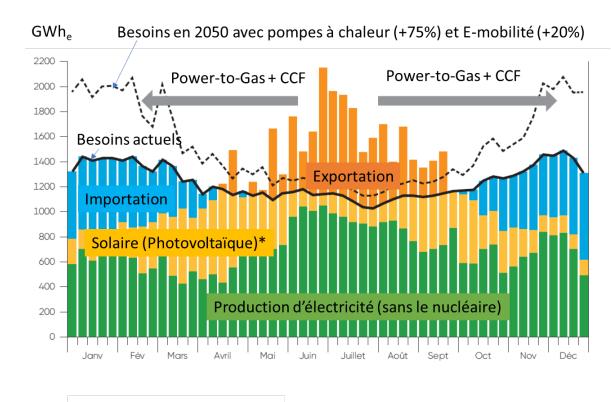
Entwicklung der Abscheidung von CO₂

Forschung mit der EPFL (Prof. Agrawal) zur Herstellung von Graphenmembranen mit Nanoporen

- Nanoporen in der Größe von Atomen zur Trennung von CO₂
- Herstellung der Poren durch eine Ozon- und Wärmebehandlung der Oberfläche

Laufende Entwicklungen für Scale-up-Membranen mit CO₂-Abscheidung bei 10 kg/Tag, dann 45 kg/Stunde

- Bau eines Reaktors zur Herstellung von Membranen
- Design, Umsetzung und Tests der Anlage für Aigle (Abscheidung von CO₂ aus WKK)


Power-to-Gas und Energiespeicherung

Interessen, Herausforderungen

Bedeutung von Power-to-Gas für die Stromversorgung der Zukunft

* 50% des toits bien orientés

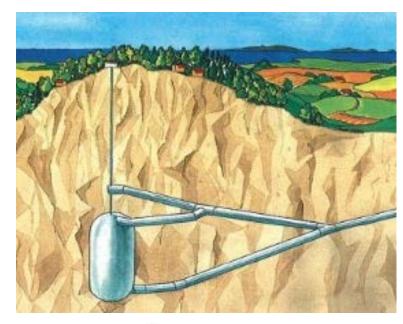
Stromerzeugung im Jahr 2050

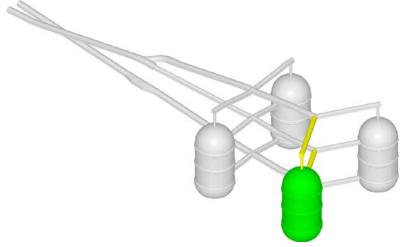
Quelle: EMPA

Grundlegende Daten (Zahlen 2019)

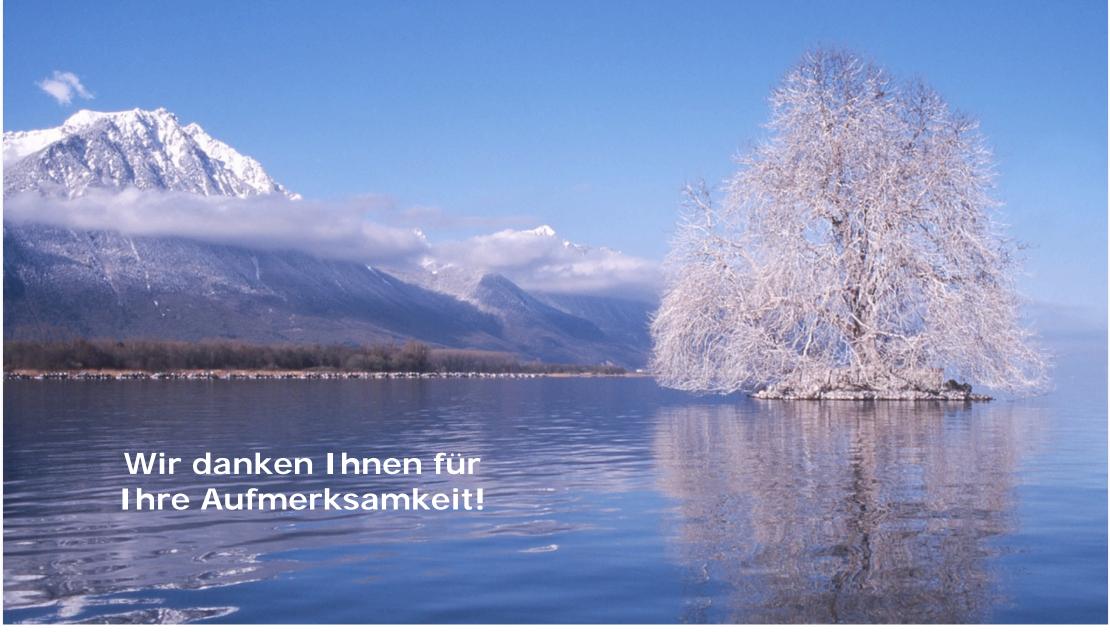
- Endverbrauch von Elektrizität: 57,2 TWh (24,7% insgesamt)
- Energieinhalt der Speicher: 8,1 TWh
- Produktionsleistung: 12,3 GW (Winter)
- Maximale Leistungsaufnahme: 9,7 GW (Winter)
- Geschätztes Potenzial für Power-to-Gas: bis zu 28 TWh

Herausforderungen der Elektrizitätsversorgung


- Der Stromverbrauch wird in Zukunft steigen, da es im Sommer zu Produktionsüberschüssen und im Winter zu zusätzlichem Bedarf kommen wird.
- Der Energiebedarf könnte bis 2050 um ein Drittel steigen.
- Der Bedarf an Flexibilität wird mit der Entwicklung intermittierender Energien (Photovoltaik und Windkraft) steigen.


Lösungen

- Entwicklung neuer "steuerbarer" Erzeugungen, z. B. Pumpspeicherkraftwerke.
- Power-to-Gas-Anlagen und neue saisonale Speicher implementieren.
- Energieimport im Winter erhöhen.


LRC-Lagerung® in Felskavernen

Planung eines/mehrerer Speicherhohlräume:

- 1 zylindrischer Hohlraum (bis zu 4 Hohlräume pro Standort)
- 121'000 m³ geometrisches Volumen pro Höhle
- Bis zu 33 MNm^{3/} Hohlraum nutzbares Volumen (30 bis 300 bar), 380 GWh/ Hohlraum oder 1,5 TWh (für 4 Hohlräume)
- 11% Gaskissen
- Bis zu 10/12 Zyklen pro Jahr
- Mit verschiedenen Gasarten kompatibel

